Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 79(4): 924-932, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37290591

RESUMO

BACKGROUND & AIMS: Current therapy for chronic hepatitis B virus (cHBV) infection involves lifelong treatment. New treatments that enable HBV functional cure would represent a clinically meaningful advance. ALN-HBV and VIR-2218 are investigational RNA interference therapeutics that target all major HBV transcripts. METHODS: We report on: i) the safety of single doses of VIR-2218 (modified from ALN-HBV by enhanced stabilization chemistry plus technology to reduce off-target, seed-mediated binding while maintaining on-target antiviral activity) and ALN-HBV in humanized mice; ii) a cross-study comparison of the safety of single doses of VIR-2218 and ALN-HBV in healthy human volunteers (n = 24 and n = 49, respectively); and iii) the antiviral activity of two doses of 20, 50, 100, 200 mg of VIR-2218 (total n = 24) vs. placebo (n = 8), given 4 weeks apart, in participants with cHBV infection. RESULTS: In humanized mice, alanine aminotransferase (ALT) levels were markedly lower following administration of VIR-2218 compared with ALN-HBV. In healthy volunteers, post-treatment ALT elevations occurred in 28% of participants receiving ALN-HBV compared with none in those receiving VIR-2218. In participants with cHBV infection, VIR-2218 was associated with dose-dependent reductions in hepatitis B surface antigen (HBsAg). The greatest mean reduction of HBsAg at Week 20 in participants receiving 200 mg was 1.65 log IU/ml. The HBsAg reduction was maintained at 0.87 log IU/ml at Week 48. No participants had serum HBsAg loss or hepatitis B surface antibody seroconversion. CONCLUSIONS: VIR-2218 demonstrated an encouraging hepatic safety profile in preclinical and clinical studies as well as dose-dependent HBsAg reductions in patients with cHBV infection. These data support future studies with VIR-2218 as part of combination regimens with a goal of HBV functional cure. TRIAL REGISTRATION: ClinicalTrials.gov identifiers: NCT02826018 and NCT03672188. IMPACT AND IMPLICATIONS: A significant unmet need exists for therapies for chronic HBV (cHBV) infection that achieve functional cure. We report clinical and non-clinical data on two investigational small-interfering RNAs that target HBx, ALN-HBV and VIR-2218, demonstrating that incorporation of enhanced stabilization chemistry plus technology in VIR-2218 reduces its propensity to cause ALT elevations relative to its parent compound, ALN-HBV. We also show that VIR-2218 reduces hepatitis B surface antigen levels in a dose-dependent manner in participants with cHBV infection. These studies support the continued development of VIR-2218 as part of therapeutic regimens for cHBV infection, with the goal of a functional cure, and are important for HBV researchers and physicians.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Animais , Camundongos , Hepatite B Crônica/tratamento farmacológico , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Terapêutica com RNAi , Ensaios Clínicos Controlados Aleatórios como Assunto , Antivirais , DNA Viral , Antígenos E da Hepatite B , Hepatite B/tratamento farmacológico
2.
Nat Biotechnol ; 40(10): 1500-1508, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35654979

RESUMO

Therapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2'-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months. Similarly, intravitreal administration to the eye or intranasal administration to the lung resulted in a potent and durable knockdown. The preclinical efficacy of an siRNA targeting the amyloid precursor protein was evaluated through intracerebroventricular dosing in a mouse model of Alzheimer's disease, resulting in amelioration of physiological and behavioral deficits. Altogether, C16 conjugation of siRNAs has the potential for safe therapeutic silencing of target genes outside the liver with infrequent dosing.


Assuntos
Precursor de Proteína beta-Amiloide , Terapêutica com RNAi , Animais , Camundongos , Primatas/genética , Primatas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico
3.
Dev Comp Immunol ; 122: 104138, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34022257

RESUMO

Mosquito anti-pathogen immune responses, including those controlling infection with arboviruses are regulated by multiple signal transduction pathways. While the Toll pathway is critical in the defense against arboviruses such as dengue and Zika viruses, the factors and mechanisms involved in virus recognition leading to the activation of the Toll pathway are not fully understood. In this study we evaluated the role of virus-produced double-stranded RNA (dsRNA) intermediates in mosquito immune activation by utilizing the synthetic dsRNA analog polyinosinic-polycytidylic acid (poly I:C). Poly I:C treatment of Aedes aegypti mosquitoes and Aag2 cells reduced DENV infection. Transcriptomic analyses of Aag2 cell responses to poly I:C indicated putative activation of the Toll pathway. We found that poly I:C is translocated to the endosomal compartment of Aag2 cells, and that the A. aegypti Toll 6 receptor is a putative dsRNA recognition receptor. This study elucidates the role of dsRNAs in the immune activation of non-RNAi pathways in mosquitoes.


Assuntos
Aedes/imunologia , Vírus da Dengue/imunologia , Pseudomonas putida/imunologia , Staphylococcus aureus/imunologia , Receptor 6 Toll-Like/imunologia , Zika virus/imunologia , Aedes/genética , Animais , Linhagem Celular , Cricetinae , Endossomos/imunologia , Microbioma Gastrointestinal/imunologia , Mosquitos Vetores/virologia , Poli I-C/imunologia , Pseudomonas putida/crescimento & desenvolvimento , RNA de Cadeia Dupla/genética , Staphylococcus aureus/crescimento & desenvolvimento , Receptor 6 Toll-Like/genética , Replicação Viral/fisiologia
4.
PLoS Negl Trop Dis ; 14(10): e0008706, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33095767

RESUMO

Prostaglandins (PGs) are immuno-active lipids that mediate the immune response in invertebrates and vertebrates. In insects, PGs play a role on different physiological processes such as reproduction, ion transport and regulation of cellular immunity. However, it is unclear whether PGs play a role in invertebrate's humoral immunity, and, if so, which immune signaling pathways would be modulated by PGs. Here, we show that Aedes aegypti gut microbiota and Gram-negative bacteria challenge induces prostaglandin production sensitive to an irreversible inhibitor of the vertebrate cyclooxygenase, acetylsalicylic acid (ASA). ASA treatment reduced PG synthesis and is associated with decreased expression of components of the Toll and IMD immune pathways, thereby rendering mosquitoes more susceptible to both bacterial and viral infections. We also shown that a cytosolic phospholipase (PLAc), one of the upstream regulators of PG synthesis, is induced by the microbiota in the midgut after blood feeding. The knockdown of the PLAc decreased prostaglandin production and enhanced the replication of Dengue in the midgut. We conclude that in Ae. aegypti, PGs control the amplitude of the immune response to guarantee an efficient pathogen clearance.


Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Imunidade Humoral , Prostaglandinas/metabolismo , Aedes/imunologia , Animais , Linhagem Celular , Vírus da Dengue/imunologia , Feminino , Regulação Enzimológica da Expressão Gênica , Interações Hospedeiro-Patógeno , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Prostaglandinas/genética
5.
Dev Comp Immunol ; 104: 103540, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31726064

RESUMO

Here we have investigated whether bacterial challenges to larval stages of Aedes aegypti can influence the adults' immune and vector competence for dengue and Zika viruses. We show that larval exposure to live Bacillus thuringiensis Berliner and Enterobacter ludwigii can result in the modulation of virus infection at the adult stage in the absence of bacterial carry-over between the two developmental stages. We observed a significant reduction in virus infection intensity in the mosquitoes exposed to bacteria as larvae but not re-exposed as adults. The pattern of immune gene transcript regulation after bacterial exposure varied between adults, depending on whether or not they had been exposed to bacteria as larvae. Adults exposed to bacteria as larvae showed an earlier immune gene mRNA enrichment when re-exposed as adults than did adults not exposed as larvae. Bacterial exposure of larvae appears to have only modest effects on adult fitness.


Assuntos
Aedes/imunologia , Infecções por Arbovirus/imunologia , Arbovírus/fisiologia , Bacillus thuringiensis/fisiologia , Enterobacter/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Animais , Vetores de Doenças , Exposição Ambiental/efeitos adversos , Regulação da Expressão Gênica , Imunidade Inata/genética , Larva , Estágios do Ciclo de Vida , Mosquitos Vetores
6.
Sci Rep ; 9(1): 9711, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273220

RESUMO

Hundreds of cellular host factors are required to support dengue virus infection, but their identity and roles are incompletely characterized. Here, we identify human host dependency factors required for efficient dengue virus-2 (DENV2) infection of human cells. We focused on two, TTC35 and TMEM111, which we previously demonstrated to be required for yellow fever virus (YFV) infection and others subsequently showed were also required by other flaviviruses. These proteins are components of the human endoplasmic reticulum membrane protein complex (EMC), which has roles in ER-associated protein biogenesis and lipid metabolism. We report that DENV, YFV and Zika virus (ZIKV) infections were strikingly inhibited, while West Nile virus infection was unchanged, in cells that lack EMC subunit 4. Furthermore, targeted depletion of EMC subunits in live mosquitoes significantly reduced DENV2 propagation in vivo. Using a novel uncoating assay, which measures interactions between host RNA-binding proteins and incoming viral RNA, we show that EMC is required at or prior to virus uncoating. Importantly, we uncovered a second and important role for the EMC. The complex is required for viral protein accumulation in a cell line harboring a ZIKV replicon, indicating that EMC participates in the complex process of viral protein biogenesis.


Assuntos
Infecções por Flavivirus/virologia , Flavivirus/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Internalização do Vírus , Replicação Viral , Animais , Chlorocebus aethiops , Culicidae/virologia , Retículo Endoplasmático , Humanos , Proteínas de Membrana/genética , Células Tumorais Cultivadas , Células Vero
7.
PLoS Negl Trop Dis ; 12(5): e0006498, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782512

RESUMO

Aedes aegypti is the vector of some of the most important vector-borne diseases like dengue, chikungunya, zika and yellow fever, affecting millions of people worldwide. The cellular processes that follow a blood meal in the mosquito midgut are directly associated with pathogen transmission. We studied the homeostatic response of the midgut against oxidative stress, as well as bacterial and dengue virus (DENV) infections, focusing on the proliferative ability of the intestinal stem cells (ISC). Inhibition of the peritrophic matrix (PM) formation led to an increase in reactive oxygen species (ROS) production by the epithelial cells in response to contact with the resident microbiota, suggesting that maintenance of low levels of ROS in the intestinal lumen is key to keep ISCs division in balance. We show that dengue virus infection induces midgut cell division in both DENV susceptible (Rockefeller) and refractory (Orlando) mosquito strains. However, the susceptible strain delays the activation of the regeneration process compared with the refractory strain. Impairment of the Delta/Notch signaling, by silencing the Notch ligand Delta using RNAi, significantly increased the susceptibility of the refractory strains to DENV infection of the midgut. We propose that this cell replenishment is essential to control viral infection in the mosquito. Our study demonstrates that the intestinal epithelium of the blood fed mosquito is able to respond and defend against different challenges, including virus infection. In addition, we provide unprecedented evidence that the activation of a cellular regenerative program in the midgut is important for the determination of the mosquito vectorial competence.


Assuntos
Aedes/virologia , Proliferação de Células , Vírus da Dengue/fisiologia , Insetos Vetores/virologia , Aedes/citologia , Aedes/metabolismo , Animais , Dengue/transmissão , Dengue/virologia , Feminino , Trato Gastrointestinal/citologia , Trato Gastrointestinal/metabolismo , Humanos , Insetos Vetores/citologia , Insetos Vetores/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
8.
PLoS Negl Trop Dis ; 12(4): e0006443, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29694346

RESUMO

Dengue virus (DENV) is the most prevalent and burdensome arbovirus transmitted by Aedes mosquitoes, against which there is only a limited licensed vaccine and no approved drug treatment. A Chromobacterium species, C. sp. Panama, isolated from the midgut of A. aegypti is able to inhibit DENV replication within the mosquito and in vitro. Here we show that C. sp. Panama mediates its anti-DENV activity through secreted factors that are proteinous in nature. The inhibitory effect occurs prior to virus attachment to cells, and is attributed to a factor that destabilizes the virion by promoting the degradation of the viral envelope protein. Bioassay-guided fractionation, coupled with mass spectrometry, allowed for the identification of a C. sp. Panama-secreted neutral protease and an aminopeptidase that are co-expressed and appear to act synergistically to degrade the viral envelope (E) protein and thus prevent viral attachment and subsequent infection of cells. This is the first study characterizing the anti-DENV activity of a common soil and mosquito-associated bacterium, thereby contributing towards understanding how such bacteria may limit disease transmission, and providing new tools for dengue prevention and therapeutics.


Assuntos
Aminopeptidases/farmacologia , Antivirais/farmacologia , Chromobacterium/enzimologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Proteínas do Envelope Viral/metabolismo , Proteínas de Bactérias/farmacologia , Dengue/virologia , Vírus da Dengue/fisiologia , Sistema Digestório/virologia , Proteólise , Vírion/efeitos dos fármacos , Ligação Viral/efeitos dos fármacos
9.
Elife ; 62017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29205153

RESUMO

Transmission of dengue virus (DENV) requires successful completion of the infection cycle in the Aedes aegypti vector, which is initiated in the midgut tissue after ingestion of an infectious blood meal. While certain Ae. aegypti midgut-associated bacteria influence virus infection, little is known about the midgut-associated fungi (mycobiota), and how its members might influence susceptibility to DENV infection. We show that a Talaromyces (Tsp_PR) fungus, isolated from field-caught Ae. aegypti, render the mosquito more permissive to DENV infection. This modulation is attributed to a profound down-regulation of digestive enzyme genes and trypsin activity, upon exposure to Tsp_PR-secreted factors. In conclusion, we show for the first time that a natural mosquito gut-associated fungus can alter Ae. aegypti physiology in a way that facilitates pathogen infection.


Assuntos
Aedes/microbiologia , Aedes/virologia , Vírus da Dengue/crescimento & desenvolvimento , Talaromyces/crescimento & desenvolvimento , Tripsina/metabolismo , Animais , Regulação para Baixo , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/virologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia
10.
Front Microbiol ; 8: 2050, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109710

RESUMO

Zika (ZIKV) and dengue virus (DENV) are transmitted to humans by Aedes mosquitoes. However, the molecular interactions between the vector and ZIKV remain largely unexplored. In this work, we further investigated the tropism of ZIKV in two different Aedes aegypti strains and show that the virus infection kinetics, tissue migration, and susceptibility to infection differ between mosquito strains. We also compare the vector transcriptome changes upon ZIKV or DENV infection demonstrating that 40% of the mosquito's midgut infection-responsive transcriptome is virus-specific at 7 days after virus ingestion. Regulated genes included key factors of the mosquito's anti-viral immunity. Comparison of the ZIKV and DENV infection-responsive transcriptome data to those available for yellow fever virus and West Nile virus identified 26 genes likely to play key roles in virus infection of Aedes mosquitoes. Through reverse genetic analyses, we show that the Toll and the Jak/Stat innate immune pathways mediate increased resistance to ZIKV infection, and the conserved DENV host factors vATPase and inosine-5'-monophosphate dehydrogenase are also utilized for ZIKV infection.

11.
PLoS Negl Trop Dis ; 11(1): e0005187, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28081143

RESUMO

We have developed genetically modified Ae. aegypti mosquitoes that activate the conserved antiviral JAK/STAT pathway in the fat body tissue, by overexpressing either the receptor Dome or the Janus kinase Hop by the blood feeding-induced vitellogenin (Vg) promoter. Transgene expression inhibits infection with several dengue virus (DENV) serotypes in the midgut as well as systemically and in the salivary glands. The impact of the transgenes Dome and Hop on mosquito longevity was minimal, but it resulted in a compromised fecundity when compared to wild-type mosquitoes. Overexpression of Dome and Hop resulted in profound transcriptome regulation in the fat body tissue as well as the midgut tissue, pinpointing several expression signatures that reflect mechanisms of DENV restriction. Our transcriptome studies and reverse genetic analyses suggested that enrichment of DENV restriction factor and depletion of DENV host factor transcripts likely accounts for the DENV inhibition, and they allowed us to identify novel factors that modulate infection. Interestingly, the fat body-specific activation of the JAK/STAT pathway did not result in any enhanced resistance to Zika virus (ZIKV) or chikungunya virus (CHIKV) infection, thereby indicating a possible specialization of the pathway's antiviral role.


Assuntos
Aedes/genética , Vírus da Dengue/fisiologia , Dengue/transmissão , Proteínas de Insetos/imunologia , Insetos Vetores/genética , Janus Quinases/imunologia , Fatores de Transcrição STAT/imunologia , Aedes/imunologia , Aedes/virologia , Animais , Dengue/virologia , Corpo Adiposo/imunologia , Engenharia Genética , Humanos , Proteínas de Insetos/genética , Insetos Vetores/imunologia , Insetos Vetores/virologia , Janus Quinases/genética , Camundongos , Fatores de Transcrição STAT/genética
12.
Sci Rep ; 6: 34084, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27678168

RESUMO

Whereas studies have extensively examined the ability of bacteria to influence Plasmodium infection in the mosquito, the tripartite interactions between non-entomopathogenic fungi, mosquitoes, and Plasmodium parasites remain largely uncharacterized. Here we report the isolation of a common mosquito-associated ascomycete fungus, Penicillium chrysogenum, from the midgut of field-caught Anopheles mosquitoes. Although the presence of Pe. chrysogenum in the Anopheles gambiae midgut does not affect mosquito survival, it renders the mosquito significantly more susceptible to Plasmodium infection through a secreted heat-stable factor. We further provide evidence that the mechanism of the fungus-mediated modulation of mosquito susceptibility to Plasmodium involves an upregulation of the insect's ornithine decarboxylase gene, which sequesters arginine for polyamine biosynthesis. Arginine plays an important role in the mosquito's anti-Plasmodium defense as a substrate of nitric oxide production, and its availability therefore has a direct impact on the mosquito's susceptibility to the parasite. While this type of immunomodulatory mechanism has already been demonstrated in other host-pathogen interaction systems, this is the first report of a mosquito-associated fungus that can suppress the mosquito's innate immune system in a way that would favor Plasmodium infection and possibly malaria transmission.

13.
Dev Comp Immunol ; 64: 53-64, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26827888

RESUMO

Mosquitoes are responsible for the transmission of diseases with a serious impact on global human health, such as malaria and dengue. All mosquito-transmitted pathogens complete part of their life cycle in the insect gut, where they are exposed to mosquito-encoded barriers and active factors that can limit their development. Here we present the current understanding of mosquito gut immunity against malaria parasites, filarial worms, and viruses such as dengue, Chikungunya, and West Nile. The most recently proposed immune mediators involved in intestinal defenses are discussed, as well as the synergies identified between the recognition of gut microbiota and the mounting of the immune response.


Assuntos
Culicidae/imunologia , Filariose/imunologia , Imunidade Inata , Intestinos/imunologia , Doenças Parasitárias em Animais/imunologia , Viroses/imunologia , Animais , Transmissão de Doença Infecciosa/prevenção & controle , Interações Hospedeiro-Patógeno , Intestinos/microbiologia , Estágios do Ciclo de Vida , Microbiota , Mosquitos Vetores
14.
Clin Vaccine Immunol ; 21(1): 29-38, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24173023

RESUMO

Dengue is the world's most common mosquito-borne viral infection and a leading cause of morbidity throughout the tropics and subtropics. Viruses are known to evade the establishment of an antiviral state by regulating the activation of interferon regulatory factor 3 (IRF3), a critical transcription factor in the alpha/beta interferon induction pathway. Here, we show that dengue virus (DENV) circumvents the induction of the retinoic acid-inducible gene I-like receptor (RLR) pathway during infection by blocking serine 386 phosphorylation and nuclear translocation of IRF3. This effect is associated with the expression of nonstructural 2B/3 protein (NS2B/3) protease in human cells. Using interaction assays, we found that NS2B/3 interacts with the cellular IκB kinase ε (IKKε). Docking computational analysis revealed that in this interaction, NS2B/3 masks the kinase domain of IKKε and potentially affects its functionality. This observation is supported by the DENV-associated inhibition of the kinase activity of IKKε. Our data identify IKKε as a novel target of DENV NS2B/3 protease.


Assuntos
Vírus da Dengue/imunologia , Quinase I-kappa B/antagonistas & inibidores , Evasão da Resposta Imune , Interferons/antagonistas & inibidores , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Células Cultivadas , Humanos , Quinase I-kappa B/metabolismo , Interferons/biossíntese , Simulação de Acoplamento Molecular , Mapeamento de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...